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Abstract—Video saliency, aiming for estimation of a single dominant object in a sequence, offers strong object-level cues for

unsupervised video object segmentation. In this paper, we present a geodesic distance based technique that provides reliable and

temporally consistent saliency measurement of superpixels as a prior for pixel-wise labeling. Using undirected intra-frame and inter-

frame graphs constructed from spatiotemporal edges or appearance and motion, and a skeleton abstraction step to further enhance

saliency estimates, our method formulates the pixel-wise segmentation task as an energy minimization problem on a function that

consists of unary terms of global foreground and background models, dynamic location models, and pairwise terms of label

smoothness potentials. We perform extensive quantitative and qualitative experiments on benchmark datasets. Our method achieves

superior performance in comparison to the current state-of-the-art in terms of accuracy and speed.

Index Terms—Video saliency, video object segmentation, geodesic distance, spatiotemporal object prior

Ç

1 INTRODUCTION

UNSUPERVISED video object segmentation, a key chal-
lenge in computer vision, aims at partitioning multiple

video frames into objects and background regions. Such
an automatic segmentation has been shown to benefit a
variety of applications such as video summarization, video
compression, content based video retrieval and human-
computer interaction, to name a few.

Traditionally, video object segmentation task is per-
formed with motion and appearance information repre-
sented by motion vectors, feature point trajectories, color
descriptors, and boundary indicators. Depending on the
availability and quality of these inputs, object regions are
usually obtained after complicated and fragile inference
procedures often with preset assumptions of object and
camera motion. In simple scenarios where the foreground
object moves distinctly from its background, grouping of
motion vectors and feature point trajectories generates
semantically meaningful segments. Several works [1], [2],
[3] analyzed point trajectories to leverage the motion infor-
mation. But, what about if a part of the object remains static?
In typical complex videos, the assumption of motion consis-
tency may result in oversegmentation, thus failing to extract
entire object regions. Utilizing both motion and appearance
cues seems to be a better choice as it was adopted by many
methods [4], [5], [6], [7], [8], [9]. Specially, [4], [5], [6]

generate a large number of object proposals [10], [11], [12]
in every frame using these cues, and cast the task of video
object segmentation as the problem of inferring and select-
ing the most relevant object proposal.

However, all these approaches still face many difficulties.
On one hand, they all require complicated object inference
techniques, which comes with a high computational
expense. On the other hand, they impose heuristically cho-
sen cues which may not be the right choice for a general
class of objects. Besides, proposal based methods sustain
the disadvantage that correct proposals are often few or do
not exist at all when the foreground object is small or similar
to the background. We can ask whether there is any reliable
object descriptor that can be employed for a general class of
video objects. We address this challenge by giving emphasis
to the value of video saliency to automatically identify visu-
ally prominent object regions in dynamic scenes. Our intui-
tion is that potentially discriminative yet confined motion
and appearance cues should be combined with more com-
prehensive spatiotemporal saliency cues in order to gener-
ate reliable object prior. Once a reliable saliency prior is
built, estimating refined appearance models and then in
turn generating accurate object segments becomes feasible.
This motivates us to decompose the automatic segmentation
problem into two stages: video saliency detection and video
object partitioning.

For an effective solution to unsupervised video segmen-
tation, we need the capability to detect salient regions in a
video. While salient object detection in still images has been
exploited in the past, computing spatiotemporal saliency in
videos is still an active area of research since extending
image based algorithms to video is nontrivial. Temporal
coherence yields significant information, nevertheless, it is
inevitably susceptible to noise due to nonuniform back-
ground motions and well-known motion estimation errors.
Moreover, most video saliency methods simply treat the
motion feature as another cue within their image saliency
models [13], [14], [15], lacking an elegant framework to
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incorporate intra-frame and inter-frame information in a
unified fashion.

In this paper, we aim to partition the foreground objects
from their backgrounds in all frames of a given video
sequence without any user assistance or contextual assump-
tions. To this end, we propose a video object segmentation
method that consists of a superpixel based spatiotemporal
saliency prior detection stage and pixel based binary label-
ing stage that runs in a recursive fashion. Our proposed
video segmentation framework is depicted in Fig. 1. We first
introduce a spatiotemporal saliency prior that incorporates
spatial and temporal stimulus and temporal coherence into
a unified, geodesic distance based model. The geodesic dis-
tance, which has been shown to be effective in many interac-
tive computer vision applications [16], [17], [18], [19], has
the power of abstracting object structure to efficiently deter-
mine its central regions by assigning higher saliency values
to more representative regions. Saliency of a region is mea-
sured by its shortest geodesic distance to background
regions in inter-frame and intra-frame graphs. Hence, we
design a skeleton abstraction method that explicitly
incorporates weak object structure and emphasizes the
saliency values of the central skeleton regions based on
geodesic distances. After obtaining video saliency, we
integrate saliency prior, dynamic location models as well
as global appearance models into an energy minimiza-
tion that is optimized via graph-cuts to generate final
video object segments. This paper builds upon and
extends our recent work in [20] with a more in depth
discussion of the algorithm and expanded evaluations.
We further introduce a new skeleton regions abstraction
method that regularizes the original regions of object
with higher saliency. Our source code and supplemental
materials, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2017.2662005.1

To summarize, our main contributions are:

� A unified framework that incorporates video
saliency for unsupervised pixel-wise labeling of

foreground objects using an energy function that
contains three unary and two pair-wise terms.

� A new formulation for video saliency by exploiting
intra-frame and inter-frame relevancy via undirected
graphs. For the intra-frame stimulus, we employ
geodesic distance on spatiotemporal edges within a
single frame. We construct the inter-frame graph for
temporal coherence between consecutive frames.

� A geodesic distance based weighting of intra-frame
and inter-frame graphs based on the observation
that salient regions have higher geodesic distances to
background regions.

� A greedy skeleton abstraction scheme for iteratively
selecting confident foreground regions.

2 RELATED WORK

In this section, we give a brief overview of recent works in
unsupervised video segmentation and saliency detection.

2.1 Unsupervised Video Segmentation

A variety of techniques have been proposed for unsuper-
vised video segmentation in the past decade. Most
approaches are based on bottom-up models using low-
level features such as motion, color, and edge orientation.
In particular, the importance of the motion information
was emphasized in many works [1], [2], [3], [21], [22], [23],
[24]. While the use of short duration motion boundaries in
pairs of subsequent frames is not uncommon [22], several
methods [1], [2], [3], [21], [23] argued that motion should
be analyzed over longer periods, as such long term analy-
sis is able to decrease the intra-object variance of motion
relative to the inter-object variance and propagate motion
information to frames in which the object remains static.
For this, [2] grouped pixels with coherent motion com-
puted via long-range motion vectors from the past and
future frames. Similarly, the work in [1] offered a frame-
work for trajectory-based video segmentation through
building affinity matrix between pairs of trajectories.
In [3], discontinuities of embedding density between spa-
tially neighboring trajectories were detected. Incorporating
higher order motion models, a clustering method for point

Fig. 1. Overview of our video object segmentation framework. Input frame is over-segmented into superpixels and a spatiotemporal edge map is pro-
duced by the combination of static edge probability and optical flow gradient magnitude. For each superpixel, we compute its object-probability and
the refined saliency estimate via intra-frame graph and inter-frame graph, respectively. An object skeleton abstraction method is further derived for
obtaining final saliency estimates via biasing the central skeleton regions with higher saliency values. Finally, spatiotemporal saliency priors, global
appearance models and dynamic location models are combined for producing correct video segmentation.

1. http://github.com/shenjianbing/saliencysegment
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tracks was proposed in [23]. In general, motion based
methods suffer difficulties when different parts of an object
exhibit nonhomogeneous motion patterns. This problem is
exacerbated further with the absence of a strong prior for
object. Moreover, these approaches require careful selec-
tion of a suitable model especially for the trajectory cluster-
ing process, which often comes with a high computation
complexity, as [7] pointed out.

There were previous efforts [4], [5], [6], [25], [26], [27] that
presented optimization frameworks for bottom-up segmen-
tation employing both appearance and motion cues. Several
methods [7], [8], [9], [28], [29] proposed to select primary
object regions in object proposal domain based on the
notion of what a generic object looks like. These approaches
benefit from the work of object hypotheses proposals [10],
[11], [12] that offer a large number of object candidates in
every frame. Therefore, segmenting video object is trans-
formed into an object region selection problem. In the selec-
tion process, both motion and appearance cues are used to
measure the objectness of a proposal. More specifically, a
clustering process was introduced for finding objects by [7],
a constrained maximum weight cliques technique to model
the selection process was imposed [8], and a layered
directed acyclic graph based framework was presented by
[9]. Work of [28] segmented video objects by ranking spatio-
temporal segment proposals with moving objectness detec-
tor trained on image and motion fields. In [29], tracking and
segmentation were integrated to detect the primary object
proposal and handle the video segmentation task. The main
drawbacks of the proposal based algorithms are their high
computational cost [30] associated with proposal generation
and complicated object inference schemes.

2.2 Saliency Detection for Image and Video

Saliency detection [31] is originally a task of simulating the
human visual system for predicting scene locations where a
human observer may fixate. Recent research has shown that
extracting salient objects or regions is more beneficial to a
wide range of computer vision applications. Saliency detec-
tion methods in general can be categorized as either bot-
tom-up or top-down approaches. Top-down approaches
[32], [33], [34], [35] are goal-directed and require an explicit
understanding of the context of the image. Supervised
learning with a specific class is therefore a frequently
adopted principle. Most of the saliency detection methods
[36], [37] are based on bottom-up visual attention mecha-
nisms, which are independent of the knowledge of the con-
tent in the image.

Inspired by visual perception studies that indicate contrast
is a major factor in visual attention mechanisms, numerous
bottom-up models have been proposed based on different
mathematical formulations of contrast. Many methods [32],
[39], [40] assumed that globally infrequent features are more
salient, and adopted various low level features, such as
intensity, color and orientation. More specially, in [41], a con-
tent-aware saliency detection with the consideration of the
contrast from both local and global perspectives was built.
Goferman et al. [42] presented a saliency method based on
the fusion of different feature channels and local center-sur-
round hypothesis. In [43], two saliency indicators, global
appearance contrast and spatially compact distribution,

were considered. Recently, several approaches [44], [45], [46]
exploited background information, called boundary prior.
Thesemethods use image boundaries as background, further
enhancing saliency computation.

While image saliency detection has been extensively stud-
ied, computing spatiotemporal saliency for videos is a rela-
tively new problem. Different from image saliency detection,
moving objects catch more attention of human beings than
static ones. In other words, motion is the most important cue
for video saliency detection, whichmakes deeper exploration
of the inter-frame information crucial. Gao et al. [13]
extended their image saliency model [47] by adding the
motion channel for prediction of human eye fixations in
dynamic scenes based on the center-surround hypothesis.
Similarly, Mahadevan et al. [14] combined center-surround
saliency with dynamic textures for spatiotemporal saliency
using the saliency model in [47]. The phase spectrum of the
Fourier transform is considered to be the key element in
obtaining the location of salient regions in [38]. Seo et al. [15]
computed the local regression kernels from the given video,
measuring the likeness of a pixel (or voxel) to its surrounding.
They extended their model for video saliency detection by
extracting a feature vector from each 3-D cube. Recently, [5]
used a statistical framework and local contrast in illumina-
tion, color, and motion for formulating final saliency maps.
Fu et al. [48] proposed a cluster-based saliency method,
where three visual attention cues, contrast, spatial, and global
correspondence, are devised to measure the cluster saliency.
Zhou et al. [49] adopted space-time saliency to generate a
low-frame-rate video from a high-frame-rate input using var-
ious low-level features and region-based contrast analysis. In
[50], gradient flow field is proposed for detecting salient
object regions in video sequences with global optimization.

3 SPATIOTEMPORAL SALIENCY PRIOR

Our video object segmentation method consists of two
stages: superpixel based spatiotemporal saliency prior
detection and pixel based binary labeling. Here, we explain
the saliency stage first.

To achieve reliable saliency estimation, our method com-
bines psychophysically motivated low-level features, such
as color, edge, and motion boundary in a unified geodesic
distance based framework. Fig. 2 shows intermediate stages
of our video saliency. First, input frames are partitioned
into superpixels for computational efficiency (Fig. 2b).
We then extract two types of edges: spatial edges (Fig. 2c)
within the same frame, and motion boundary edges
(Fig. 2d) across neighboring frames. These two features are
explicitly integrated into a single spatiotemporal edge map
(Fig. 2e) as described in Section 3.1. In Section 3.2, geodesic
distance is adopted in an intra-frame graph for computing
rough object probability of each superpixel as given Fig. 2f.
To improve the saliency estimation, in Section 3.3, an inter-
frame graph is incorporated with geodesic measure for pro-
ducing an initial spatiotemporal saliency map as shown in
Fig. 2g. Finally, we apply a skeleton abstraction method that
amplifies the saliency values of central skeleton regions
based on geodesic distances to incorporate weak object
structure, which can be seen in Fig. 2h and is detailed in
Section 3.4.
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3.1 Spatiotemporal Edge Generation

Human visual perception [51], [52] suggest that basic visual
features such as motion and edges are processed at the
human pre-attentive stage for visual attention, which moti-
vates us to combine spatial edge and motion boundary cues
into a coalescent spatiotemporal edge map. Both color and
motion discontinuities provide valuable evidence in pre-
dicting object boundaries. As shown in Fig. 2, spatial color
discontinuities in a single frame and optical flow field esti-
mated from two consecutive frames reveal the important
regions of the video frames. We build our approach on these
two indicators.

Given an input video sequence fF 1; F 2; . . .g, we compute
a spatial edge probability map Ek

c of kth frame Fk using [53].
The value of Ek

c ðxÞ, normalized to [0, 1], represents the prob-
ability of edge at the corresponding pixel x. The optical flow
between the pairs of subsequent frames are obtained by the
large displacement motion estimation algorithm [54]. Let V k

be the optical flow field of Fk, and we compute the motion
gradient magnitudeEk

o of V
k asEk

oðxÞ ¼ krV kðxÞk. We over-
segment each frame into superpixels using SLIC [55]. Let
Yk¼fyk1; yk2; . . .g be the superpixel set of Fk. Given the pixel
edge map Ek

c , the edge probability of superpixel ykn is com-
puted as the average value of the pixels within ykn. This gen-
erates a superpixel-wise edge map Ek

c . Similarly, the optical
flow magnitude map Ek

o is re-computed on superpixel level.
Then, we generate a spatiotemporal edgemapEk as

Ek ¼ Ek
c � Ek

o : (1)

The intuition behind the design of (1) is that, distinct
motion patterns and spatial gradients are indicators of the
location of salient foreground object. This can be easily
observed in Fig. 2e, where object superpixels either have
high spatiotemporal edge map values or are surrounded by
those high valued superpixels.

3.2 Intra-Frame Graph Construction

To highlight the foreground regions that have high spatio-
temporal edge values or are surrounded by regions with

high spatiotemporal edge values, we employ geodesic dis-
tance to compute a rough object probability map. The geo-
desic distance dgeoðv1; v2;GÞ between any two nodes v1; v2 in
graph G is the smallest integral of a weight function W over
all possible paths between v1 and v2

dgeoðv1; v2;GÞ ¼ min
Cv1 ;v2

Z v1

v2

��W ðmÞ � _Cv1;v2ðmÞ��dm; (2)

where Cv1;v2ðmÞ is a path connecting the nodes v1; v2.
For frame Fk, we construct an undirected weighted

graph Gk ¼ fVk; Ekg with superpixels Yk as nodes Vk and
the links between adjacent nodes as edges Ek. Based on the
graph structure, we derive a jVkj � jVkj weight matrix Wk,
where jVkj is the number of nodes in Vk. The (m, n)-th ele-
ment of Wk indicates the weight of edge ekmn 2 Ek between
adjacent superpixels Y k

m and Y k
n

Wk
mn ¼

��EkðykmÞ � EkðyknÞ
��; (3)

where EkðY k
mÞ and EkðY k

n Þ correspond to the spatiotemporal
boundary probability of superpixels Y k

m and Y k
n , separately.

For superpixel ykn, the probability PkðyknÞ of being fore-
ground is computed by the shortest geodesic distance to the
image boundaries using

PkðyknÞ ¼ min
q2Qk

dgeoðykn; q;GkÞ; (4)

where Qk indicate the superpixels along the four bound-
aries of Fk. The geodesic distance dgeoðv1; v2;GkÞ between
any two superpixels v1; v2 2 Vk in graph Gk can be com-
puted as

dgeoðv1; v2;GkÞ ¼ min
Cv1 ;v2

X
m;n

Wk
mn; m; n 2 Cv1;v2 : (5)

which can be seen as the accumulated edge weights along
their shortest path on graph Gk.

If a superpixel is outside the desired object, its probabil-
ity value is small because there exists a pathway to image

Fig. 2. Overview of geodesic distance based spatiotemporal saliency prior. (a) Input frame Fk. (b) Oversegmentation of Fk into superpixels Yk.
(c) Spatial edge probability map Ek

c of Fk. (d) Gradient magnitude Ek
o of optical flow of Fk. (e) Spatiotemporal edge map Ek via (1). (f) Object result

Pk via intra-frame graph. (g) Saliency result Sk via inter-frame graph. (h) Final video saliency via the proposed skeleton abstraction method.
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boundaries that does not pass the regions with high spatio-
temporal edge value. Whereas, if a superpixel is inside the
object, this superpixel is surrounded by the regions with
large probabilities of edges, which increases the geodesic
distance to image boundaries. Since our graph is very
sparse, the shortest paths of all superpixels are efficiently
computed by the Johnson algorithm [56].

3.3 Inter-Frame Graph Construction

The foreground probability map Pk reveals the foreground
object region but it is not complete and precise. In particu-
lar, probability values of the true background regions near
the object boundary may have high values due to the over-
segmentation process. Besides, inaccurate optical flow esti-
mation may result in erroneous values. By the definition of
saliency, foreground and background regions should be
visually different, and object regions should be temporally
continuous between consecutive frames. These motivate us
to estimate saliency between pairs of adjacent frames.

For each pair of adjacent frames Fk and Fkþ1, we con-
struct an undirected weighted graph G0k ¼ fV0k; E0kg. The
nodes V0k consist of the superpixels Yk of Fk and the super-
pixels Ykþ1 of Fkþ1. There are two types of edges: intra-
frame edges that link spatially adjacent superpixels and
inter-frame edges that connect temporally adjacent super-
pixels. The superpixels are spatially connected if they are
adjacent in the same frame. Temporally adjacent superpix-
els refer to the superpixels which belong to different frames
but have overlap. We assign the edge weight as the Euclid-
ean distance between their mean colors in the CIE-Lab color
space. For each frame, we use a self-adaptive threshold to
decompose frame Fk into background regions Bk and
object-like regions Uk through the probability map Pk. The
threshold sk for Fk is computed as

sk ¼ mðPkÞ; (6)

where mð�Þ is the mean probability of all pixels within the
frame Fk. We assign Uk and Bk of kth frame as

Uk ¼ �yknjPkðyknÞ > sk
�

[ �yknjykn is temporally connected to Uk�1�;
Bk ¼ Yk �Uk:

(7)

In a causal system, previously determined object regions
offer valuable information to eliminate artifacts due to inac-
curate optical flow estimation. Therefore, we project object-
like regions of prior frame Fk�1 onto frame Fk. Our motiva-
tion can be observed in Fig. 3. The object estimation result
of frame Fk (Fig. 3c) is not ideal, due to the incorrect optical
flow estimation (Fig. 3b). If Fk is segmented using only the
self-adaptive threshold Tk defined in (7), an inferior decom-
position is generated (Fig. 3d), further leading into incorrect
saliency result (Fig. 3g). When the previous estimation is
projected, a more correct decomposition is obtained
(Fig. 3f), and more consistent saliency is attained (Fig. 3h).

Based on the graph G0k, we compute saliency map Sk

(Skþ1) for frame Fk (Fkþ1) as follows:

Sk
�
ykn
� ¼ min

b2Bk[Bkþ1
dgeo

�
ykn; b;G0k

	
;

Skþ1�ykþ1n

� ¼ min
b2Bk[Bkþ1

dgeo

�
ykþ1n ; b;G0k

	
:

(8)

The rationale behind (8) is that the saliency value of a
superpixel is measured by its shortest path to background
regions in color space considering both spatial and tempo-
ral information. We update Pk and Pkþ1 for frame Fk and
Fkþ1 with Sk and Skþ1, and keep iterating this process for
the following two adjacent frames Fkþ1 and Fkþ2 until the
final frame.

3.4 Skeleton Abstraction

To further refine the saliency estimates above, we use a geo-
desic distance based abstraction scheme that augments core

Fig. 3. Illustration of inter-frame graph construction. (a) Frame Fk. (b) Optical flow flied V k. (c) When the optical flow estimation is not accurate, object
probabilities Pk are degraded. (d) Fk is decomposed into background regions Bk and object-like regions Uk by self-adaptive threshold sk in (6). The
black regions indicate Bk, while the bright regions indicate Uk. (e) The decomposition of previous frame Fk�1. (f) The object-like regions Uk�1 of Fk�1
are projected onto Fk. (g) Spatiotemporal saliency result Sk for Fk with consideration of (d) and (e). (h) Spatiotemporal saliency result Sk for Fk with
consideration of (e) and (f).
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regions with higher saliency values. We decompose (Fig. 4c)
frame Fk into two parts: background regions B0k and object-
like regions U0k using a threshold similar to the one in (6)
yet computed by the saliency result Sk as

s0k ¼ m
�
Sk
�
;

U0k ¼
n
yknjSk

�
ykn
�
> s0k

o
;

B0k ¼ Yk �U0k:

(9)

As the saliency result Sk is more accurate than Pk, we
decompose frame Fk through an efficient thresholding strat-
egy. The skeleton region abstraction is an iterative process
based on the undirected weighted graph Gk defined in
Section 3.2. The base skeleton region should have two prop-
erties. First, this region should be as far away from B0k as
possible; second, it should be close to foreground regions
U0k. Based on this condition, the base skeleton region is
selected by

Ok  
(
argmin
o2U0k

maxu02U0kdgeo
�
o; u0;Gk�

minb02B0kdgeo
�
o; b0;Gk�

)
: (10)

After obtaining the base skeleton region (Fig. 4d), we
select the other skeleton regions. These regions are as far
away from B0k and previous skeleton regions as possible.
This induces the skeleton regions to cover object regions
that may have different appearances. Therefore, the skele-
ton regions are selected in a greedy fashion

Ok  Ok [
(
argmax

o2U0k

�
min
o02Ok

dgeo
�
o; o0;Gk�

� min
b02B0k

dgeo
�
o; b0;Gk�	): (11)

As shown in Fig. 4e, each of the subsequent skeleton
regions is selected to maximize its geodesic distance to

background and previously selected skeleton regions. This
process continues until a small percentage (10 percent) of
the object-like regions U0k are selected as skeleton. All
object-like regions that lie on the shortest geodesic path
between the base and subsequently chosen skeleton regions
are also selected as skeleton regions. Finally, we increase
the saliency values of the skeleton regions (2�) in Fig. 4h.
A quantitative evaluation of the improvement of each step
of our saliency scheme is presented in Section 5.4.

4 PIXEL LABELING ENERGY FUNCTION

In the second stage of our segmentation method, we per-
form binary video segmentation based on the saliency
results from Section 3. Global appearance models for fore-
ground and background are established using our saliency
prior. Dynamic location model for each frame is estimated
frommotion information extracted from subsequent frames.
Finally, the spatiotemporal saliency maps, global appear-
ance models and dynamic location model are combined
into an energy function for binary segmentation.

We formulate the segmentation task as a pixel labeling
problem. Each pixel xk

i in Fk takes a label lki 2 f0; 1g, where
1 corresponds to foreground. A labeling L¼flki gk;i of pixels
from all frames represents a partitioning of the entire video.
Similar to other segmentation works [7], [57], we define an
energy function for labeling L of all the pixels as

FðLÞ ¼
X
k;i

Uk
�
lki
�þ �1

X
k;i

Ak
�
lki
�þ �2

X
k;i

Lk
�
lki
�

þ �3

X
ði;jÞ2Ns

Vk�lki ; lkj�þ �4

X
ði;jÞ2Nt

Wk
�
lki ; l

kþ1
j

�
;

(12)

where the spatial pixel neighborhood Ns consists of eight
neighboring pixels within the same frame, the temporal pixel
neighborhood Nt consists of the forward-backward nine
neighbors in adjacent frames, and i; j are indices of pixels.

Fig. 4. Illustration of skeleton abstraction process. (a) Frame Fk. (b) Saliency results Sk of (a) obtained via (8). (c) Fk is decomposed into background
regions B0k (black area) and object-like regions U0k (bright area) via (9). (d) The red region corresponds to the first selected skeleton region by (10).
(e) The yellow regions correspond to the subsequently selected skeleton regions by (11). (f) We iteratively add skeleton regions until the number of
selected skeleton regions reaches 10 percent of object-like regions U0k. (g) The blue regions are the other skeleton regions that lie on the shortest
geodesic path between the base and the selected skeleton regions. (h) The enhanced saliency values of the skeleton regions.
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This energy function consists of three unary terms, Uk, Ak

andLk, and two pairwise terms Vk andWk, which depend on
the labels of spatially and temporally neighboring pixels. The
purpose of Uk is to evaluate how likely a pixel is foreground
according to the spatiotemporal saliency maps computed in
the previous step. The unary appearance termAk encourages
labeling pixels that have similar colors according to their
global appearance models. The third unary term Lk is for
labeling pixels according to the location priors estimated
from the dynamic location models. The pairwise terms Vk
andWk encourage spatial and temporal smoothness, respec-
tively. The scalar parameters � weight the various terms,
which can be set according to the characteristic of the video
content. Having described the separate terms of the complete
F below, we use graph-cuts [58] to compute the optimal
binary labeling and obtain the final segmentation (Fig. 5h).

Saliency Term Uk. The unary saliency term Uk is based on
the saliency estimation results and penalizes assignments of
pixels with low saliency to the foreground. The term Uk has
the following form

Uk
�
lki
� ¼ �log �1� Skðxk

i ÞÞ if lki ¼ 0;
�log �Skðxk

i ÞÞ if lki ¼ 1:



(13)

Appearance Term Ak. To model the foreground and back-
ground appearance, two weighted color histograms Hf and
Hb are computed in RGB color space. Each color channel is
uniformly quantized into 10 bins, and there is a total of 103

bins in the joint histogram. Each pixel contributes into these
histograms Hf and Hb according to its color values with
weights SkðxÞ and 1� SkðxÞ, respectively.

To construct the foreground (background) histogram, we
only use pixels from the superpixels spatially connected to
the former foreground (background) superpixels and have
saliency values larger (smaller) than the adaptive threshold,
which is defined as the mean value of spatiotemporal

saliency map. This strategy makes better use of the informa-
tion of spatiotemporal saliency results and minimizes
adverse effects of background regions with similar color to
the foreground contaminating the foreground histogram
(Figs. 5c and 5e). Finally, the histograms are normalized.
Denoting cðxk

i Þ as the histogram bin index of RGB color value
at pixel xk

i , the unary appearance termAk is defined as

Akðlki Þ¼
�log

�
Hb

�
cðxk

i
Þ
�

Hf

�
cðxk

i
Þ
�
þHb

�
cðxk

i
Þ
� 	 if lki ¼ 0;

�log
�

Hf ðcðxki ÞÞ
Hf

�
cðxk

i
Þ
�
þHb

�
cðxk

i
Þ
� 	 if lki ¼ 1:

8>><>>: (14)

Location Term Lk. For the cases of cluttered scenes and
background regions having similar appearance models
with the foreground, the object motion consistency provides
a valuable prior to locate the areas likely to contain the
object. Thus, we estimate the location of foreground object
with respect to motion information from a small number of
neighboring frames.

For kth frame, we accumulate the optical flow gradient
magnitudes within a temporal window of �t frames to
obtain relatively longer term motion information of the fore-
ground regions as

bEk ¼
Xkþt
i¼k�t

Ei
o ¼

Xkþt
i¼k�t

krV ik: (15)

Having a larger temporal window provides some robust-
ness to individual pixel-wise unreliable optical flow esti-
mates. However, this may also cause bEk loses its
discriminative power since motion cue spans out on too
many frames. In our experiments, we set t ¼ 5. We use the
intra-frame graph construction described in Section 3.1 to
compute a dynamic location model for each frame (Figs. 5f
and 5g). Finally, we determine the location prior Lk

i for pixel
xki and the unary location term Lk as

Fig. 5. Illustration of video segmentation. (a) Input frame Fk. (b) Video saliency map Sk. (c) The regions within the red boundaries have higher
saliency values than adaptive threshold, which are used for establishing foreground histogram model. The regions between the green boundaries
and red boundaries are for building background histogram model. (d) Global appearance models fHf;Hbg estimated from (c). (e) Foreground proba-
bility computed via appearance model in (d). (f) Accumulated optical flow gradient magnitude bEk yields trajectory of the object within few subsequent
frames. (g) Dynamic location prior Lk obtained via intra-frame graph described in Section 3.2. (h) Final segmentation results by (13), which consists
of the saliency term (b), the appearance term (e), and the location term (g), and two pairwise terms.
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Lk�lki � ¼ �log �1� Lkðxk
i Þ
�

if lki ¼ 0;
�log �Lkðxki Þ

�
if lki ¼ 1:



(16)

Pairwise Terms Vk,Wk. These terms impose label smooth-
ness by constraining the segmentation labels to be both spa-
tially and temporally consistent. They are contrast-
modulated Potts potentials [7], [22], [57], which favor
assigning the same label to neighboring pixels that have
similar color. The spatial consistency term Vk between spa-
tially adjacent pixels xi and xj is defined as

Vk�lki ; lkj� ¼ d
�
lki ; l

k
j

�
exp

�ujjCðxk
i
Þ�Cðxk

j
Þjj2

; (17)

where Cðxk
i Þ is the color vector of the pixel xk

i and dð�Þ
denotes the Dirac delta function, which is 0 when lki 6¼ lkj .
The constant f is chosen [57] to be

u ¼
 
2
X
ði;jÞ2Ns

jjCðxk
i Þ � Cðxk

j Þjj2
!�1

; (18)

To ensure the exponential term in (17) switches appropri-
ately between high and low contrast. Similarly, the temporal
consistency termWk is defined as

Wk
�
lki ; l

kþ1
j

	
¼ d
�
lki ; l

kþ1
j

	
exp

�ujjCðxk
i
Þ�Cðxkþ1

j
Þjj2

: (19)

5 EXPERIMENTAL EVALUATIONS

We first evaluate the effectiveness of our spatiotemporal
saliency estimation method by comparing against some
state-of-the-art saliency methods in Section 5.1. After that,
we compare both quantitatively and qualitatively our over-
all segmentation method with serveral well-known video
segmentation approaches (in Section 5.2). Then we offer
more detailed exploration and dissect various parts of our
approach. In Section 5.3, we assess its computational load.
In Section 5.4, we evaluate the effectiveness of each step of
the proposed framework.

We performed experiments on four benchmark datasets:
the SegTrack [59], the extended SegTrack [60], and Frei-
burg-Berkeley Motion Segmentation Dataset (FBMS) [1].
The SegTrack dataset contains 6 videos where full pixel-
level segmentation ground-truth for each frame is available.
We follow the common protocol [7], [8], [22] and use five
video sequences (Birdfall, Cheetah, Girl, Monkeydog and Para-
chute) for evaluations. The extended SegTrack dataset con-
sists of 8 additional sequences, which have complex
backgrounds and varying object motion patterns. We select
five sequences (Bird of Paradise, Frog, Monkey, Soldier and
Worm), each of which contains a single dominant object.
The widely used FBMS dataset, containing 59 video clips,
covers various challenges such as large foreground and
background appearance variation, significant shape defor-
mation, and large camera motion.

5.1 Evaluation of Spatiotemporal Saliency

Since spatiotemporal saliency detection is an important step
of our video segmentation approach, we assess its perfor-
mance against the existing saliency methods. Using the
original implementations obtained from the corresponding
authors, we make comparisons between 6 alternative

approaches including manifold ranking saliency model
(MR) [45], saliency filter (SF) [40], self-resemblance based
saliency (SS) [15], saliency via quaternion Fourier transform
(QS) [38], cluster-based co-saliency (CS) [48], and space-
time saliency for time-mapping (TS) [49]. The former two of
these methods aim at image saliency while the latter four
are designed for video saliency.

We report results on three widely used performance
measures including precision-recall (PR) curve, F-score [39],
and mean absolute errors (MAE). Precision is the fraction of
the correctly labeled foreground pixels among the all pixels
labeled as foreground by the algorithm, while recall is
the fraction of correctly labeled foreground pixels among
the ground-truth foreground pixels. We generate binary
saliency maps from each method and plot the correspond-
ing PR curves by varying the operating point threshold.

In general, a high recall response may come at the
expense of reduced precision, and vice versa. Therefore, we
also estimate F-score for evaluating precision and recall
simultaneously. F-score evaluates precision and recall is
defined as

F-score ¼ ð1þ b2Þ � precision� recall

b2 � precisionþ recall
; (20)

where we set b2 to 0.3 to assign a higher importance to pre-
cision as suggested in [39].

For a complete analysis, we follow [40] to evaluate the
mean absolute error between a real-valued saliency map S

and a binary ground-truth G for all pixels as MAE ¼
jS� Gj=N , where N is the number of pixels. The MAE esti-
mates the approximation degree between the saliency map
and the ground-truth map, and it is normalized to [0, 1].
The MAE provides a better estimate of conformity between
estimated and ground-truth maps.

The precision-recall curves of all methods are reported in
Fig. 6a. As shown, our method significantly outperforms
the state-of-the-art. The minimum recall value in these
curves can also be regarded as an indicator of robustness. A
high precision score at the minimum recall value means a
good separation between the foreground and background
confidence values, as most of the high confidence saliency
values (close to 1) are correctly estimated the foreground
object. As can be seen, when the threshold is close to 255,
the recall scores of other saliency models become very
small, and the recall scores of SS [15] and QS [38] shrinks to
0. To our advantage, the minimum recall of the our method
does not drop to 0. This demonstrates our saliency maps
align better with the correct objects. In addition, our saliency
method achieves the best precision rates above 0.9, which
shows it is more precise to the actual salient information.
Similar conclusions can be drawn from the F-score, as
shown in Fig. 6b. Our F-score is well above the performance
of other methods. The MAE results are presented in Fig. 6c.
Our saliency maps successfully reduce the MAE almost by
75 percent compared to the second best method (SF [40]).

Fig. 7 shows a qualitative comparison of different meth-
ods, where brighter pixels indicate higher saliency probabil-
ities. It is observed that image saliency methods (MR [45],
SF [40]) applied independently to each frame produce
unstable outputs, some saliency maps even completely miss
the foreground object, mainly because temporal coherence
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in video can convey important information for identifying
salient objects. In contrast, video saliency methods (SS [15],
QS [38], CS [48], and TS [49]) perform relatively better as
they utilize motion information. However, video saliency
maps from previous models are often generated in lower
precision and tend to assign lower foreground probabilities
to pixels inside the salient objects. This is due to the fact that
optical flow estimations are unreliable.

Based on above, we draw two important conclusions: (1)
motion information gives effective guidance for detecting
foreground object; (2) making methods rely heavily on
motion information is not the optimal choice. Comprehen-
sive utilization of various features in spatial and temporal
space (color, edges, motion, etc.) produces more satisfactory
segmentation results. Our model can estimate more accu-
rate saliency maps within and on the boundaries of the tar-
get objects in cluttered backgrounds. In addition, the
assigned saliency values have higher confidence values,
which also reflects in the quantitative analysis.

5.2 Evaluation of Pixel Labeling

Our framework produces both spatially and temporally
coherent video object segmentation results in a fully unsu-
pervised way. We use the average per-frame pixel error rate

(APFPER) by [59] to evaluate the performance on the
SegTrack dataset. This error rate measures the number of
misclassified pixels and used in [8], [9], [22]. As discussed
in [60], the intersection-over-union overlap (IoU) metric,
which is the intersection over union of the estimated and
ground-truth segmentation maps, is an informative indica-
tor of the performance. This metric is also widely used
for evaluating the segmentation performance. Therefore, we
report our performance on the IoU metric for the SegTrack
[59], extended SegTrack [60], and FBMS [1] by computing
the score for each frame and then averaging it over
all frames.

The APFPER results of ours and [1], [7], [8], [9], [22], [23],
[27], [59], [60], [61], [62] on the SegTrack are shown in
Table 1. The segmentation methods in [1], [7], [8], [9], [22],
[23], [27], [60], [61] and our method are unsupervised, while
other methods in [59], [62] are supervised. As seen, our
method outputs promising results on most video sequences,
compared with existing top-performing unsupervised algo-
rithms. Furthermore, our algorithm is better or on a par
with the supervised approaches [59], [62], which indicates
the robustness of the proposed approach.

Table 2 presents the IoU scores of our method and [7], [9],
[22], [25], [27], [29], [63], [64], [65], [66] on the SegTrack and

Fig. 6. Comparison of saliency detection methods using SegTrack [59] (top), extended SegTrack [60] (middle) and FBMS [1] (bottom) with pixel-level
ground-truth: (a) average precision recall curve by segmenting saliency maps using fixed thresholds, (b) F-score, (c) average MAE.

28 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 1, JANUARY 2018



the extended SegTrack. Our approach outperforms the
state-of-the-art methods and achieves the highest overall
IoU score (81.6). The IoU scores for representative clips of

the FBMS and the average performance over the entire
dataset are demonstrated in Table 3. The proposed method
achieves the best score on most videos and performs

Fig. 7. Qualitative comparison against the state-of-the-art methods on the SegTrack benchmark [59], the extended SegTrack [60] and the famous
FBMS dataset [1] with pixel-level ground-truth labels. Our saliency method yields continuous saliency maps that are most similar to the ground-truth.

TABLE 1
APFPER

Results on SegTrack Dataset [59] Compared to the Ground-Truth

video frames unsupervised supervised

Ours [1] [7] [8] [9] [23] [22] [27] [60] [61] [59] [62]

SegTrack

Birdfall 30 140 217 288 468 155 606 189 144 199 468 252 454
Cheetah 29 622 890 905 1,175 633 11,210 806 617 599 1,968 1,142 1,217
Girl 21 991 3,859 1,785 5,683 1,488 26,409 1,698 1,195 1,164 7,595 1,304 1,755

Monkeydog 71 350 284 521 1,434 365 12,662 472 354 322 1,434 563 683
Parachute 51 195 855 201 1,595 220 40,251 221 200 242 1,113 235 502

Avg. - 459 1,221 740 2,071 572 18,228 677 502 505 2,516 699 922

Lower values are better. The best and the second best results are boldfaced and underlined, respectively.

TABLE 2
IoU Scores on SegTrack Dataset [59] and Extended SegTrack Dataset [60] Compared to the Ground-Truth

video frames unsupervised supervised

Ours [7] [9] [22] [29] [27] [25] [63] [64] [65] [66]

SegTrack

Birdfall 30 74.5 48.7 71.4 37.4 72.5 73.2 57.4 78.7 57.4 56.0 32.5
Cheetah 29 64.3 43.4 58.8 40.9 61.2 64.2 24.4 66.1 33.8 46.1 33.1
Girl 21 88.7 77.5 81.9 71.2 86.4 86.7 31.9 84.6 87.9 53.6 52.4

Monkeydog 71 78.0 64.3 74.2 73.6 74.0 76.1 68.3 82.2 54.4 61.0 22.1
Parachute 51 94.8 94.3 93.9 88.1 95.9 94.6 69.1 94.4 94.5 85.6 69.9

Bird of Paradise 98 94.5 22.3 35.2 85.4 90.0 93.9 86.8 93.0 95.2 5.1 44.3
Frog 279 83.3 71.0 76.3 69.4 80.2 81.5 67.1 56.3 81.4 14.5 45.2

Extended
SegTrack

Monkey 31 84.1 38.6 61.4 69.6 83.1 63.9 61.9 86.0 88.6 73.1 61.7
Soldier 32 79.2 10.0 51.4 47.4 76.3 36.8 66.5 81.1 86.4 70.7 43.0
Worm 243 74.8 40.5 53.9 73.0 82.4 61.7 34.7 79.3 89.6 36.8 27.4

Avg. - 81.6 51.1 65.8 65.6 80.2 73.3 56.8 80.1 76.9 50.2 43.1

Higher values are better. The best and the second best results are boldfaced and underlined, respectively.
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comparably or better than other methods. Representative
pixel labeling results are shown in Fig. 8, and target fore-
grounds in various scenarios are segmented accurately
by our algorithm. In contrast, existing methods [7], [9], [22]
either mislabel background pixels as foreground or miss
foreground pixels.

5.3 Computational Load

Our method is tested on a Dell T5610 workstation with an
Intel Xeon E5 CPU of 2.50 GHz. We analyze the computa-
tional load of the steps in the proposed pipeline. We also
include four video saliency methods [15], [38], [48], [49]
and three video segmentation methods [7], [9], [22] to pro-
vide a comprehensive view of execution times of existing
approaches.

The execution times are presented in Fig. 9 (excluding
optical flow computations for all algorithms). Fig. 9a shows

the execution time comparisons of our and other saliency
methods. Our saliency method is one of the fastest solutions
and only slower than the frequency domain based method
[38]. Fig. 9b reports the per-frame processing times of the
overall segmentation procedures. All solutions use the opti-
cal flow estimation method of [54]. Our method (3.5 seconds
per frame) is much faster than [7], [9] but only slower than
[22]. The object proposal based segmentation methods of
[7], [9] require computationally expensive object proposal
generation and inference stage [10] costing 43.5 seconds
additional time per frame. Clearly, running time efficiency
is the major bottleneck for the usability of those video

Fig. 8. Our segmentation results on extended SegTrack dataset [60] (Monkey), and FBMS [1] (Horse) with pixel-level ground-truth masks. The pixels
within the green boundaries are segmented as foreground.

TABLE 3
IoU Scores on a Representative Subset of the FBMS Dataset
[1], and the Average Computed over the 59 Video Sequences

video Ours [7] [9] [22]

FBMS

Bear2 70.1 87.5 21.0 86.8
Cars5 38.5 10.7 38.7 17.4
Cars9 60.0 19.5 28.9 52.4
Cars10 55.9 65.7 74.9 79.0
Cats1 85.7 19.8 81.5 83.1
Dogs2 91.7 90.8 83.7 86.3
Horses1 89.4 77.6 83.5 77.5
Horses2 92.7 13.5 86.7 91.5
People1 68.1 56.0 64.8 53.3
People2 68.3 47.1 56.5 48.0
People4 86.4 82.1 83.8 79.4
People5 56.4 10.7 84.4 51.8
Rabbits1 90.8 92.4 91.6 92.9
Rabbits2 71.0 20.4 47.8 28.3
Rabbits5 88.1 55.1 84.7 90.1

Avg. 63.3 52.3 54.3 47.7

Fig. 9. Computational load of our method and the state-of-the-art for
320�240 video. (a) Execution time of video saliency estimation stage
compared against other video saliency methods [15], [38], [48], [49]. (b)
Execution time of overall method compared against other video segmen-
tation methods [7], [9], [22]. (c) Execution time of each intermediate
steps. Step1 and Step2 are saliency estimations via intra-frame graph
and inter-frame graph, respectively. Step3 is the final saliency step.
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segmentation algorithms, as a substantial amount of time is
spent preprocessing frames to generate object proposals.

The execution time of each part of our whole scheme is
shown in Fig. 9c. The whole segmentation pipeline takes
about 3.5 seconds for each frame, where over 60 percent of
the runtime is spent on the edge generation [53]. Saliency
detection takes a total of 1.2 seconds: 0.38 seconds for com-
puting the saliency via intra-frame graph (Step1), 0.59 sec-
onds for improving saliency results via inter-frame graph
(Step2), and 0.23 seconds for generating final saliency via
abstracting skeleton regions (Step3).

5.4 Validation of the Proposed Algorithm

To exhibit more details of our algorithm and objectively eval-
uate the contribution of different parts in the proposed
saliency model to the saliency detection performance, we
report the evaluation of each stage of our algorithm on the
extended SegTrack [60] and the FBMS [1] datasets. We report
the performance improvement of each step in Fig. 10. Step1
and Step2 refer to the initial saliency via the intra-frame graph
(Section 3.2) and the refined saliency via the inter-frame graph
(Section 3.3). Step3 corresponds to our final saliency results
(Section 3.4). Compared to the PR curve for Step1, the perfor-
mance of Step2 is elevated and Step3 achieves the best perfor-
mance. This demonstrates the performance improvement of
our saliency refinement via inter-frame graph and object skel-
eton abstraction scheme based saliency optimization. The
MAE measure results show similar conclusions. Overall, the
performance of each step improves progressively, which
demonstrates that the combination of all steps effectively
improves the overall performance.

6 CONCLUSION

We have presented an unsupervised approach that
incorporates geodesic distance into saliency-aware video
object segmentation. As opposed to the traditional video
segmentation methods that heavily rely on cumbersome
object inference and motion analysis, our method empha-
sizes the importance of video saliency to offer reliable cues
for pixel labeling of foreground video objects.

The proposed method incorporates intra-graph edge and
inter-graph motion boundary information into a spatiotem-
poral edge map. In intra-frame graph, the geodesic distance
between the superpixel and frame boundary is exploited to
estimate the foreground probability. In inter-frame graph,
geodesic distance to the estimated background is utilized to
update the spatiotemporal saliency map for each pair of
adjacent frames. The geodesic distance is also employed to
extract the foreground superpixels in the skeleton abstrac-
tion step to further enhance the saliency scores. In the pixel
labeling stage, an energy function that combines global
appearance models, dynamic location models and spatio-
temporal saliency maps is defined and minimized via
graph-cuts to obtain the final segmentation results. We have
evaluated our methods on four benchmarks, namely Seg-
Track [59], extended SegTrack [60], and FBMS [1]. The
extensive experimental evaluations show that our approach
achieves higher performance scores than many other exist-
ing methods.
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